On the wavelet transform of fractional Brownian motion

نویسندگان

  • J. Ramanathan
  • Ofer Zeitouni
چکیده

The wavelet transform of a function f(t) is deened by the formula: Wf(t; a) = W a f(t) = 1 p a Z f(s)g(t ? s a) ds where g(t) is a xed function, t 2 R and a 2 R +. This transform yields a joint timescale representation the original input function that has been of great recent interest. (See for example D1] D2] and HW]). In a recent correspondence, Flandrin F] proposed the use of the wavelet transform to analyze the behavior of fractional Brownian motion, a highly nonstationary random process. (For a background on fractional Brownian motion and some of it's applications, see M1] and MV]). The wavelet transform of a stochastic process, X(t), is a random eld WX(t; a) on the upper half plane. The process t 7 ! W a X(t) can be thought of as the component of the original process at scale a. A consequence of Flandrin's computation is that fractional Brownian motion is stationary at each xed scale. In particular, when X(t) is a fractional Brownian motion, the covariance of the process t 7 ! W a X(t) is of the form (1) EW a X(t) W a X(s)] = a (t ? s a) where is a positive deenite function determined in an explicit manner by the order or the fractional Brownian motion and the deening function g(t) of the wavelet transform. This fact is used by Flandrin to make rigorous sense of the spectral content of fractional Brownian motion. It is natural to ask whether there are other Gaussian processes whose wavelet transforms have such a natural covariance structure. In addition, are there any Gaussian processes whose wavelet transform is stationary with respect to the aane group (i.e. the statistics of the wavelet transform do not depend on translations and

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the practical implication of mutual information for statistical decisionmaking

A theorem characterizing fractional Brownian motion by Index Terms -Wavelet transform, fractional Brownian motion.the covariance structure of its wavelet transform is established.

متن کامل

Multiscale representations: fractals, self-similar random processes and wavelets

2 Principles 4 2.1 Fractals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.1.1 Definition and history . . . . . . . . . . . . . . . . . . . . . . . . 4 2.1.2 Fractal dimension . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.1.3 Hölder exponent and singularity spectrum . . . . . . . . . . . . . 6 2.2 Self-similar random processes . . . . . . . . . . . . . . ....

متن کامل

Wavelet entropy and fractional Brownian motion time series

We study the functional link between the Hurst parameter and the normalized total wavelet entropy when analyzing fractional Brownian motion (fBm) time series—these series are synthetically generated. Both quantifiers are mainly used to identify fractional Brownian motion processes [L. Zunino, D.G. Pérez, M. Garavaglia, O.A. Rosso, Characterization of laser propagation through turbulent media by...

متن کامل

Characterization of the Laser Propagation Through Turbulent Media by Quantifiers Based on Wavelet Transform

1 The propagation of a laser beam through turbulent media is modeled as a fractional Brownian motion (fBm). Time series corresponding to the center position of the laser spot (coordinates x and y) after traveling across air in turbulent motion, with different strength, are analyzed by the wavelet theory. Two quantifiers are calculated, the Hurst exponent and the Normalized Total Wavelet Entropy...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IEEE Trans. Information Theory

دوره 37  شماره 

صفحات  -

تاریخ انتشار 1991